
REPORT DOCUMENTATION PAGE Form Approvd

P~~h r mn awta wicolouaiOf Intofrnatlgai I1 ciI!8ted to aIoraq* i moutpe pv eewte. Incun U1It time, toe fOWm r ~A fltm -t I wot fan q duu ata Wucs9.wal an.4 ftilfl i.at i and c*o''nq an. rvloowanq Me~ Collectioni Of mtorrnatIon. Se,'dcommarnu r"Gainq t atrden 1Wtarate Of env 0~ mw o f 0 tft'ScQIICUo AOnftoiaUOA ,idueng oufgemtoon fom r fQGUCoIq tMIS *Urai. Co W&snqCon PdEuaflhmte S0tK@. O1rWtoae0 fo nWrnMeon 0m Omwaon eno Itewu. a Il effgr,O&M a ,.Ihwav. Sata a20. Aflhnqton. VA a ndoa-la to the Officeof Manaqrn ert and Sudqa. Pae twore MeoU-tson prot (O?044ll),w..aatc., 0C ,osai.

1. AGENCY USE ONLY (Leave b anki 2. REPORT DATE I 3. REPORT TYPE AND DATES COVIRED'
II FINAL 1 Oct. 87 thru 30 Sep 8'

S 4. TiTLE AND SUBTiTLE S. FUNDING NUMBERS

HIGH PERFOPlUIAIICE COMPUT21I PROGAMMIIG ENVIPiONHMENTS

L. AUTHOR(S)

Lawrence Snyder
Da iiotkin E E T

7. PERIORMING ORGANIZATION NAME(S) AND ARESS J9UL PERFORMING ORGANIZATION
University of 'lashington )REPORT NUMBER

0Computer Science Department G- AFOSR,-83-0023

eattle, WA 919561102F
PR-2304 TA-A2

9. SPONSORINGIMONITORING AGENCY NAME(S) AND AOORESS(ES) 10. SPONSORING/ MONITORING
AIR folRCi uFFICE OF SCIENTIFIC aR2SEA2CT AGENCY REPORTNUMBER
Mathematical and Information Sciences
Building 410
3oiling AF3, DC 20332-6448

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONI AVAILABIiTY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; Distribution unlimited.

13. ABSTRACT (Maxamum 200 wordt)

.This one year grant had the primary goal the assessment of the Poker Parallel
Programming environment and the planning and design of new parallel pro-
gramming environment. These goals were achieved.The new programming en-
vironment, to be built on a software platform that permits rapid prototyping of
alternative environments, was designed using a three level language abstrac-
tion. The central publications include the assessment of Poker, two papers on
prototype graphic debugging environment, and two papers on parallel com-
puter structures. Thomas J. Holman completed his Ph.D. degree

90 01 II 127
14. SUIUCT TERMS 15. NUMBER OF PAGES

It PRICE CODE

17. SECURMT CLASSIICATION 13. SECURITY CLASSIFICATION It. SECURITY CLASSIICTION 20. LIMTATION OF ABSTRACT
OF REPORT OF TIlS PAGE Of ABSTRACT

U:CLASSIFIED U14CLASSIFIED UNCLASSIFIZD SI1k
NSN 7S40-G1-20-SS)00 Standard Form 2" (Rev. 2-69)

'-tCv1e* f" AM tiiJ CC V9'f



Final Report

Grant Number: AFOSR-88-0023

Title: High Performance Computer Programming Environments

Principal Investigators: Lawrence Snyder and David Notkin

Period: 1 October 1987 - 30 September 1988

1 Executive Summary.

This one year grant had as its primary goal the assessment of the Poker Parallel Program-
ming Environment [Snyder 841 and the planning and design of a new parallel programming
environment. These goals were achieved. The new programming environment, to be built on
a software platform that permits rapid prototyping of alternative environments, was designed
using a three level language abstraction [Snyder 89]. The central publications included the
assessment of Poker [Notkin et al. 88), two papers on a prototype graphic debugging envi-
ronment, Voyeur [Bailey, Socha & Notkin 88, Socha, Bailey &S Notkin 88] and two papers
on parallel computer structures [Snyder 88, Holman & Snyder 89]. The Poker Parallel Pro-
gramming environment was distributed under the aegis of this grant [Poker 88], permitting
other researchers to assess it. Thomas J. Holman completed his Ph. D. degree.

2 Introduction and Background.

The proposal setting forth the plans for this project called for a five year effort covering
the design, development, implementation, testing, assessment and distribution of a new
parallel programming environment founded on the concepts pioneered in the Poker Parallel
Programming Environment [Snyder 84]. The plan, enunciated by Capt. John Thomas of
AFOSR, was to begin with an initial award of three years at the budget levels presented
in the revised budget; with the understanding that satisfactory performance would result
in funding for the final two years. The funding was terminated after the first year by Dr.
Abraham Waksman of AFOSR for reasons not related to our performance on the grant. This
report covers the work conducted during that one year.

The proposed programming environment, eventually named the Orca, has its intellectual
roots in the Poker Parallel Programming Environment. Developed over the period 1982-1988



with ONR and NSF funding, Poker was the first parallel programming environment and the
first programming language to demonstrate portability across different parallel machines.
It provides graphic programming facilities for the challenging, but most general, model of
parallel computation, the nonshared or distributed memory model. Because Poker sought
to introduce radically new ideas about parallel programming and because most of the Poker
team was still intact when the present project began, it was natural for the research to begin
by evaluating the Poker experiment. That work [Notkin et al. 88] is described in the next
section.

Once Poker had been assessed, the planning for the new environment began. In an effort
to understand how the difficult task of parallel program debugging might be more effectively
supported than it was with the Poker environment, a prototype graphic debugger was devel-
oped. The debugger was called Voyeur [Bailey, Socha & Notkin 88, Socha, Bailey & Notkin
88]. Though Voyeur was interfaced to the Poker environment, the intent was to develop a
facility that would be suitable for the more ambitious goals of Orca. Voyeur demonstrated its
effectiveness by finding errors in a variety of Poker programs and its development continues.
Voyeur is described in Section 4.

The planning and design of the Orca environment progressed throughout the entire year.
Implementation of a prototype system began after the conclusion of the current grant.

An important characteristic of parallel software that is not shared by software for sequen-
tial machines is a greater dependence on the architectural characteristics of the underlying.
execution engine; architecture affects parallel software more. Accordingly, it is natural to
conduct architectural research concurrently with parallel software development, and this pol-
icy lead to publication of two papers on parallel architecture design [Snyder 88, Holman &
Snyder 89]. The first produced the first taxonomy of synchronous parallel machines capable
of explaining why they must be synchronous. The second provided a new design method-
ology for parallel computers wherein the components included in a machine have to "pay
their way" in speeding up the execution of (Poker) programs when compared against using
the hardware for more processing elements of a simpler kind. Both papers generated con-
siderable interest in the architecture community and they are described in Sections 5 and 6,
respectively.

3 Assessment of Poker
Poker was an experimental system with two goals - to be a useful programming tool, and
to create new ways of programming parallel computers. To meet the latter objective, many
nontraditional language mechanisms were included in the environment. Like any instance
where many new ideas are tried, we found that some worked and some did not. Before
building the new environment, we assessed each Poker mechanism to determine which should
be retained [Notkin et al. 88].

Recall that Poker [Snyder 84] provides an integrated programming environment to sup- ,d-
port the distributed memory model of parallel computation- see Figure 1. It uses interactive c
graphics to show the programmer metaphorically rich pictures of a programming situation or

L .



Poker Front-end Poker Back-ends

Programming views Program Simulators

C~PPim atabase Generic
10 Nams Cosc Cb@--

Code amesEmulators

Switc SetingsPring le
10

Parallel Computers
o 0 0 0 0

00000Seun

Make View

Command Request

Run-tim., View
Trace

I,0

Text Editor

Figure 1: The Structure of Poker



Cholesky decomposition FFT
Dynamic programming SIMPLE
Matrix multiply (systolic) ADI
Band matrix multiply SOR

(systolic) Polygon clipping
Vector-matrix multiply WAP (systolic)
Matrix multiply LU-decomposition

(divide & conquer) Transitive closure
Topological sort Batcher's sort
Conjugate gradient Jacobi iteration
Sharks & fishes Game of Life
Dataflow simulator

Table 1: Programs Built Using Poker

customized to his particular problem. The environment executes on a scientific workstation
and cross compiles to the parallel machine. Since it does not represent programs as mono-
lithic pieces of code, it stores the program in a database. Poker uses an extended version of
C as the process language, it has interactive debugging facilities (apart from Voyeur), and
provides library and operating system interfaces.

Based on the experience derived from writing the set of programs listed in Table 1, the
principal findings of the Poker evaluation can be summarized informally as follows:

" Interactive graphics is a Dower tool for simplifying parallel programming.

" The nonsymbolic, database representation of the program (from which synthetic pic-
tures of components of the program can be generated) provides the basis for a wide
range of programmer support with considerable research potential.

" The relational database of Poker was difficult to use and an object oriented approach
is likely to work better.

" A more powerful high level (technically a "Z level") language is needed: Poker's was
too weak.

" The explicit presentation of the communication structure of the algor'thim is crucial to
Poker's retargetability and efficiency.

" Poker's program form was too rigid.

" Though Poker is one of few languages that treats I/O a- something other than an
afterthought, it was too low level.

* Poker's use of simulators and its interactive, graphic debugging are a good beginning
step for supporting the difficult task of parallel piogram debugging; performance de-
bugging are also crucial. Though many things can and have been criticized about



X-Windows - user

Renere event-driven
R X-window specification program

rAp 'caion specific dataModeler a, 8, a n+Dlation routines

m la tomtr )

Figure 2: View System Structure

Poker, it was a successful experiment. Many of the ideas tried in Poker are only now
being proposed for other languages. As a result, the new environment design begins
on a stable foundation of experience.

4 Voyeur
Voyeur is a prototype system for viewing and graphically debugging nonshared memory
parallel programs [Bailey, Socha & Notkin 88, Socha, Bailey & Notkin 881 . The motivation
for Voyeur begins with two facts: (1) Poker has a generic graphic debugging facility which
at the time of its development was superior to any other parallel debugging facility and (2)
debugging parallel programs is sufficiently difficult that more assistance is needed by the
programmer. The goal for Voyeur then was to move beyond what was provided as standard
in Poker. The result is a convenient facility for programmer-customized graphic illustrations
of programs, which can give filtered and interpreted information about their execution. The
resulting displays have high information content leading to rapid discovery of bugs.

The basic logic of Voyeur is given in Figure 2. The system is event driven, capable of
processing events from an annotated program running in "realtime" in a Poker simulator,
or processing events from a postmortem trace.

There are three primary components: an adapter, a modeler and a renderer. The adapter
serves simply as an interface between the different formats produced by the annotated pro-
grams and the formats needed within Voyeur. The modeler manages application-specific



G.r'oIat.On * 2

|' - 1 - -i G

, -1
It - /

Figure 3: An x, y plot of shark and fish icons

I data, i.e. it keeps the internal representation of what is to be displayed to the user. The

renderer produces the synthetic picture that the user sees on the screen. The X windows
system provides the system support for the displays.

Voyeur was used to produce a trace view similar to that originally provided by Poker.
This is still a generic facility. To customize displays for application-specific debugging,
support for other views was provided: The icon view enabled programs like the Sharks and
Fishes (an ecology simulation) to be displayed; see Figure 3. The distributed linked list view
perr, iitted program data structures to be displayed. The vector view, which was used to
show the runtime behavior of the Simple program, provided an easy but powerful way of
directly illustrating program values.

The power of the program-specific debugging was convincingly illustrated with Voyeur.
Three bugs were quickly found in the Sharks and Fishes program. For the Simple program a
bug was not found. In particular, using the Voyeur vector view, the anomolous behavior of
the program was shown to be due to numerical instability rather than a bug in the algorithm.

Following the completion of the contract, work has continued on Voyeur. Color has been
added, the system has been reprogrammed for the C++ language, and support has been
provided in the new environment for Voyeur-type debugging.

5 Synchronous Parallel Computation

Though a large number of computer taxonomies have been developed over the last several
decades, all have been inadequate. Many have been overly influenced by technology, and
nearly all focus on internal physical rather than logical structure. Flynn's taxonomy, which

shwterniebeairo h imlrgapo ide an eas buIoeflwyo



gave us the SIMD and MIMD designations, is undoubtedly the most famous and widely
used, but it has only four groups and one of those is dubious (MISD). A small contribution
to the taxonomization of computers has been developed [Snyder 88].

The key contribution of this work is a classification of the synchronois computers which
carries with it an explanation of why they must be synchronous. This is accomplished by
following Flynn's lead in recognizing the importance of the instruction stream (I- stream)
and the data stream (D-stream) of computers, but departing from Flynn by recognizing that
these streams are not monolithic. They are formed of addresses, generally sent from the
processors to the memories, and values, which can move both ways between processors and
memories. The values are interpieted differently depending upon which stream they are a
part of - either instructions or data. After some manipulation and analysis, machines can
be classified based on the number of components in their I- and D-streams.

Though the full taxonomic development is needed before classifications of specific ma-
chines can be presented, it is possible to give a hint of why synchronous machines are
synchronous. Basically, any machine that has a single element in the address component of
its I-stream must be synchronous no matter how complex the remainder of operations are.
This is because the establishment of that address (usually by incrementing an instruction
counter) will serve as the synchronizing point. All other times can be defined relative from
the address time, all other operations must complete before the next address time begins,
etc. If there are multiple instruction addresses being generated they can skew in time and
become asynchronous, but one address has nothing to skew with respect to.

A substantial amount of additional taxonomic work has been completed but remained
unpublished at the conclusion of the grant.

6 Profiles of Programs

Programming environment research of the kind supported by this grant is generally ex-
pected to produce results in software, but the work to be described in this section is hard-
ware research that directly benefitted from our study of programming environments. Before
explaining how, we must explain what we did [Holman & Snyder 89].

When building parallel computers there is always a tradeoff between using the hardware
for a modest number of extremely fast machines or a larger number of machines that are not
maximally fast. With a little thought it is clear that no absolute choice for this is possible.
Any answer depends on two "variable" phenomena - how much of the current hardware
technology is needed to implement any particular circuit, and which facilities are most used
in the programs users want to run. Assuming we had specific numbers for these variable
phenomena, we have developed a methodology to answer the "tradeoff" question - a few
fast processors vs many slower processors. Current VLSI technology gives us hard numbers
for the first of the variable phenomena. An experimental simulator for the programming
environments and programs from Table 1 provide the numbers for the second variable.

The simulator in question was developed for Poker to test out the idea that when getting
a parallel program functionally correct, the specific details of the parallel hardware are



unimportant. Thus a "generic" Darallel machine would be sufficient, and could run faster.
So we developed a simulator which provided an idealized machine environment for functional
debugging. One of the features of the simulator is its ability to fully instrument a program.
counting the dynamic frequency of all of the instructions executed and the time spent in
communication and waiting. This provides exactly the data needed to evaluate the tradeolfs
mentioned above.

The methodology has been used to analyze the structures architects use to make parallel
computer processing elements fast. We have validated quantitatively the conventional wis-
dom that floating point units are cost-performant. Specifically, we have shown that if the
transistors used for the floating point units of Transputer T-800 chips were used to make
more processors and the floating point instructions were simulated in software (the way they
were on the T414) then the machine would be slower. Conversely, the conventional wisdom
that says that barrel shifters are a good addition to ALUs is wrong by this analysis. It would
be better to use the transistors used in barrel shifters for more processors and to simulate
the shifts in software. A variety of other features were also studied.

7 Conclusions.

The planning and design of a new parallel programming environment were undertaken. Along
the way a number of publications and software were produced. These include an evaluation
of the novel features of Poker, the design and implementation of a new graphic debugger,
Voyeur, and a study involving the impact of the dynamic behavior of parallel programs on
parallel machine design.

References

[Bailey, Socha & Notkin 881
M. Bailey, D. Socha and D. Notkin
Parallel Debugging Using Graphical Views
Proceedings of the International Conference on Parallel Processing,
Penn State, pp. 46-49

[Holman & Snyder 89]
T.J. Holman and L. Snyder
Architectural Tradeoffs in Parallel Computer Design
In Charles L. Seitz (ed.) Proceedings Decennial Caltech Conference on 1LSI,
pp. 317-334, 1989



[Notkin, el al. 88]
D. Notkin, D. Socha, L. Snyder, M. Bailey, B. Forstall, K. Gates, R. Greenlaw,
W. Griswold, T. Holman, R. Korry, G. Lasswell, R. Mitchell and P. Nelson
Experiences with Poker
Proceedings of the ACM SIGPLAN Symposium on Parallel Programming:
Experience with Applications, Languages and Systems, July 1988, pp. 10-20

[Poker 88]
Poker (4.2) Reference Manual
University of Washington, Technical Report 88-10-05, 1988

[Snyder 84]
Lawrence Snyder
Parallel Programming and the Poker Programming Environment
IEEE Computer 17(7):pp. 27-36, July, 1984

[Snyder 88]
Lawrence Snyder
A Taxonomy of Snychronous Parallel Machines
Proceedings of the International Conference on Parallel Processing, pp. 281-285

[Snyder 89]
Lawrence Snyder
The XYZ Abstraction Levels of Poker-like Languages
Springer-Verlag LNCS Series, (to appear)

[Socha, Bailey & Notkin 88]
D. Socha, M. Bailey and D. Notkin
Voyeur: Graphical Views of Parallel Programs
Proceedings of the SIGPLAN/SIGOPS Workshop on Parallel and Distributed
Debugging, ACM pp. 206-215

MM !MM


